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Abstract 

  

This work presents a new approach of resolution of the Partial Differential Equations (PDE), which makes it possible to 

solve problems defined by complex PDEs. We named this method “Finite Windows Methods” (FWM). This method is 

adapted to the complex problems such as the modeling of the multiphasic phenomena of transfer in porous environments 

(drying, flows in an oil tank, …), which utilizes conservation PDEs (mass, energy, momentum) generally nonlinear, and 

of mechanical balance in the porous matrix which becomes deformed under the effect of the transfers. The first part of 

this work consists of  presenting and describing the method in general. Then the method is tested on a simple case of 

transfer of heat through a wall. 

 

Key words: Complex, Modeling, Transfer multiphasic, Differential equations, Porous matrix 

 

 

Introduction 

 
1
The convective drying of a food product is optimal when 

the drying conditions (velocity, temperature, air 

moisture…) are well defined (Ertekin and Yaldiz, 2004, 

Edoun et al., 2010, Takamte et al., 2013). However, when 

designing a drier, their compartments must be accurately 

dimensioned to meet the operational requirements (Yang 

et al., 2009). It becomes important for designers to have a 

tool for numerical simulation of the heat and mass transfer 

phenomena which take place during such operations. But 

to reach that goal, it is necessary solve very complex PDE 

systems taking into account the characteristics of the 

concerned products. Two types of complexity are then 

faced: the non linearity and a strong coupling between the 

fluid and the mechanical structure.   

In the literature, these equations are generally solved using 

the finite differences or finite volumes methods with 

enormous calculations and many approximations 

(Nougier, 1981, Risser, 2006, Leveque, 2007). Currently, 

one of the best methods to resolve those problems are the 

Finite Elements Methods (FEM). Here the concerned 

domain will be divided into finite elements defined by a 

basic geometry and defined  interpolation functions for 

unknown quantities or geometry (Iso-parametric 

elements). Continuity is being ensures by the pooling of 

the elements, the final discrete equations to solve will then 

comprise a very large number of variables that usually 

leads to storage and numerical conditioning problems. It 

will then be a question of solving an enormous system of 
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N equations with N unknowns. A judicious choice of 

interpolations functions or calculation points for the 

coefficients of equations (spectral elements) can result in 

improving the stability and accuracy of the solution of 

these equations. But generally the Finite Element Method 

is still quite limited.  

 In this work we have attempted to formulate the 

“Finite Windows Methods” (FWM). It will consist to 

relaxation loops carried out on a domain, in order to 

ensure a good numerical stability at each step. Throughout 

this document we will describe the methodology of the 

method. 

 

Materiel and Method 

 

Simple Example 

 

The problem considered here is very simple: the heat 

conduction in a flat plate of length L . Its transversal 

dimension is supposed to be infinite, hence leading to a 

one dimensional heat flow. 
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Given the initial and boundaries conditions shown on the 

figure above, the equation to be solved is:  
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Where a the thermal diffusivity of the plate is supposed 

constant. 

 

Exact analytic solution 

 

Many methods exist for solving analytically (1). We used 

the separation of variables method, as it seemed to be 

easier and more efficient to be implemented. This method 

leads to the following solution: 
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In this work, this exact solution has been computed with a 

precision of 10
-3

, and been validated by a quick finite 

differences computation. 

 

Solution using the FWM 

 

Let consider the following grid in the Time-Space domain. 

 
Figure 1: The time-space grid for the FWM. 

 

The FWM principle we are going to use here is as follow. 

At each time, a given node will be seen through a given 

visualization window. Then, its Temperature will be 

updated according to an objective function defined in the 

window. After it, we move to another node and repeat the 

same procedure, and so on until we got a predefined 

convergence. The displacement scheme over the nodes 

will consist of moving towards increasing times, and for a 

given time towards increasing x  coordinates. Here, we 

will call “a pass” a displacement between nodes that 

covers all the nodes of the grid. The convergence of this 

algorithm will be judged versus the number of passes. 

Now let’s make the formulation of the visualization 

window. 

 The Window Element (WE) is as shown in the figure 

2. The interpolation will be made using Lagrange 

interpolating functions. 

 
Figure 2: The time-space Window Element used. 

 

Let call  ),( txNN jj   the interpolation functions. Given 

the 
jT  temperatures at the nodes, the temperatures in the 

element can be approximated by the following polynomial 

function: 
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(with xxjtjj aNNA ,,  ) 

 

whose absolute value has to be minimized in each point of 

the window. For it, we will use a least squares method. 

Hence, let define: 
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If 
iT  is the temperature at the node of interest in the 

window, then its best value has to verify:  

  0)( 21 









W

jj

ii

dWTA
TT

R
                (6) 

Which leads to 0 jij
W
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Finally, a better temperature for the node of interest is: 
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Equation (7) will use for the updating process in windows.  

The boundaries conditions here are fixed ones. Thus they 

will be taken into account just by not moving on boundary 

nodes. 

 

Solution using two classic FEMs 

 

We have also solved this problem by a classic FEM 

approach: elementary formulation, assembling, boundary 

conditions, linear system solving. Two types of elementary 

formulations have been used using the same type of 

element as the above window element: least squares and 

Galerkine projection method. The boundaries conditions 

have been taken into account by the diagonal penalization 

technique. 
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Results 

 

The space-time grid is characterized by the following 

parameters 

 

- 
tx NN ,  the number of nodes respectively in the space 

axis and the time axis. 

- 
tx  ,  the spacing between nodes respectively in the 

space axis and the time axis. 

- 
xxNL  )1(  the total length of the plate. 

-  
ttf Nt  )1( the final time of the simulation. 

  

The value of the four cases tested in the present work are 

presented in Table 1.  

Let call 
jiT ,
 the temperature at the node located 

thi  space 

value and thj  time value, and 
jiT ,

ˆ  the exact temperature at 

this node. The calculations will be conducted on four sets 

of parameters. Many passes will be done for each set, and 

the convergence at each pass will be characterized by the 

following vector: 

 

 )ˆ( ,,1 jiji
i

j TTAbsMeanE  , 2j  (fixed boundary 

condition at 1j ) 

which expresses the proximity of the solution to the exact 

one at each time step. 

The following graphs ( )( jfE j  ) show the results we 

have got. The results using the Galerkine projection 

method was quite far from the exact solution, proving that 

this formulation is not appropriate here at all.  The 

following parameters have been used in all the examples: 
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a) Case 1 result 

 

 
Figure 3: Convergence evolution at each time step with 

case 1 space-time parameters 

Table 1: Parameters values of four cases  

 

Value of space-time parameters 

 

  ∆x ∆t Nx Nt L tf 

Case 1 0.1 120 11 11 1m 1200s 

Case 2 0.1 120 11 11 1m 2400s 

Case 3 0.1 60 11 11 1m 600s 

Case 4 0.05 120 21 11 1m 1200s 

 

With the given grid parameters, the classic FEM gives 

results further from the exact solution as the time increase. 

We have the same behavior with FWM for small numbers 

of passes. But a good precision as well as the convergence 

is obtained quickly by increasing the number of passes. 

Here 15 passes are enough for a good convergence. 

 

b) Case 2 result 

 

Here we have increase the final time, keeping the same 

time step of 120s. What we can notice is that more passes 

are needed for convergence.  

 
Figure 4: Convergence evolution at each time step with 

case 2 space-time parameters 

 

Case 3result 

 

 
Figure 5: Convergence evolution at each time step with 

case 3 space-time parameters 
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Results of test 4   

 

Here, the time parameters are unchanged compared to the 

first example. The length of the plate is still 1m, but there 

are twice more space nodes. It appears that more passes 

are needed to achieve a good convergence. It was the same 

result in the second example where we doubled the 

number of time nodes as well as the final time. 

 
Figure 6: Convergence evolution at each time step with 

case 4 space-time parameters 

 

Here we have keep the same number of nodes, reducing 

the time step. First, we can see that the classic FEM 

precision with respect with the time hasn’t changed. 

Secondly if we consider the nodes numbers, the 

convergence rate is nearly the same, which means that jE  

depends mainly of j  than 
t . Obviously as the time step 

t  has decreased, this leads to a reduced convergence rate 

with respect with the time. 

 

Conclusions 

 

The primary result here is that the FWM is an effective 

concept, and is even capable of solving problems in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

contexts were the classic FEM fails. The examples 

conducted above show that for this problem, contrary to 

what could be thought, increasing the number of nodes 

decreases the convergence speed for a small increase in 

precision. We can’t not generalize this result because this 

fact mainly depends on the properties of the problem, the 

interpolation functions used and the windows geometry. 

The FWM also has some advantages regarding the solving 

process: no heavy matrix memorization or meshing 

technique are required and the updating equation is well 

scaled, as it concerns only terms defined in the window, 

which might be of the same order of magnitude. After this 

work, the next one will be the solving of a subsonic fluid 

flow problem leading to a set of non-linear PDEs. Also, 

we can start looking at some other aspects: 

- What are the convergence conditions for a given 

problem, according to the window formulation and the 

domain discretisation? 

- What could be the architecture of a multiple processor 

parallel machine capable efficiently implement the FWM? 
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