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Abstract 

  

This paper describes the results of a numerical heat transfer model and CFD based simulation for natural convection 

during melting of metals and alloys. The influence of natural convection on the evolving melt front and the undergoing 

transport phenomena in the individual phases were investigated. An enthalpy formulation based fixed grid methodology 

was developed for the numerical solution of convection-diffusion controlled phase change problems. To understand the 

basic heat transfer mechanism during melting both 1-D and 2-D problems were solved. The basic feature of the proposed 

method lies in the representation of the latent heat evolution, and of the flow in the solid-liquid mushy zone, by suitable 

chosen sources. Results obtained from the numerical study were compared to experimental data available in the 

literature. The method converged rapidly and was capable of accurately predicting both the position and morphology of 

the melt front at various times with relatively modest computational requirements. 

 

Keywords: Numerical heat transfer, Phase change problems, Fixed grid methodology, Enthalpy. 

 

 

1. Introduction 

 
1
The computational modeling of systems with solid and 

liquid phase has become a highly popular subject due to its 

promotion to better understand nature as well as in the 

development of the advanced technologies. The physical 

properties of the materials are in general dependent upon 

the direction. As such, numerous studies necessitate the 

inclusion of the anisotropic thermo-physical properties 

when modeling the solid-liquid phase changes. In Most 

practical situations involving a liquid/solid phase change, 

however convection effects (either forced or free) are 

important and in fact may totally dominate over 

conduction. The melting of pure gallium in a rectangular 

cavity has been numerically investigated using the 

enthalpy-porosity approach for modeling combined 

convection-diffusion phase change in the present work. 

Several works has been carried out in the field of Phase 

change (melting or solidification) of metals and alloys. 

N. Shamsundar and E. M. Sparrow (1975) worked on 

multidimensional conduction phase change via the 

enthalpy model. It is shown that enthalpy model developed 

was equivalent to the conventional conservation equation 

of the solid and liquid regions and at the solid-liquid 

interface The solution method was used to obtain results 

for local and face integrated heat transfer rates, boundary 

temperature, solidified fraction and interface position, all 
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as function time. At low values of the Biot number, the 

surface-integrated heat transfer rate was relatively 

constants during the entire solidification which is a 

desirable characteristic for phase change thermal energy 

storage. 

  V.R.Voller and C. Prakash (1987) worked on 

convection-diffusion mushy region phase change 

problems. An enthalpy formulation based fixed grid 

methodology was developed for the numerical solution of 

convection-diffusion controlled mushy region phase 

change problems. The basic feature of the proposed 

method lies in the representation of the latent heat of 

evolution and the flow in the solid-liquid mushy zone by 

suitable chosen sources. In a numerical modeling analysis 

of mushy region solidification the enthalpy is a sound 

starting point in that any functional relationship 

 TfH   may be readily incorporated in to the enthalpy 

function. This method is general and can handle situations 

where phase change occurs at a distinct temperature or 

over a temperature range. A. D. Brent, V.R.Voller, and K. 

J. Reid (1998) worked on convection-diffusion phase 

change by using the enthalpy-porosity technique for the 

melting of the pure metal. C. J. Ho and C. H. Chu of 

Taiwan (1994) worked on phase change problems for 

multiple moving boundaries during melting inside an 

enclosure imposed with cyclic wall temperature. The focus 

of the this study was the numerical simulation of multiple 

moving solid-liquid interfaces during natural-convection-

dominated melting of a pure material contained in a 
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vertical square enclosure imposed with time-periodic 

large-amplitude oscillatory wall temperature. V. R.Voller, 

P. Felix, and C. R. Swaminathan (1996) worked on cyclic 

phase change with fluid flow. C. K. Chun and S. O. Park 

(2000) worked on fixed grid finite difference method for 

phase change problem. A simple finite method was 

developed for solid-liquid phase change problems. The 

method was based on a fixed grid and implicit in time. A 

fictitious temperature concept was introduced to derive 

finite difference equations to deal with the nodal points 

across the solid-liquid interface. The algorithm was 

applied to a one dimensional Stefan problem for which 

exact solution were available. The computational results 

were found an excellent agreement with the exact 

solutions. The proposed method yielded no oscillations of 

temperature and phase front which were commonly 

observed with the typical enthalpy method. Voller et, al, 

(1990) also worked on fixed grid techniques for phase 

change problems. They categorize the major fixed grid 

formulations and solution methods for conduction 

controlled phase change problems. Using a two phase 

model of a solid-liquid phase change, the basic enthalpy 

equation was derived. Many important physical processes, 

including both solid-liquid transformations and solid state 

transformations, involve phase change. The emphasis in 

the numerical modeling of such systems centres on the 

treatment of the latent heat evolution. This paper presents 

the characteristics of solid –liquid interface change against 

time on melting of metals and alloys. The velocity and 

temperature were tracked in the process. 

  
2. Heat Transfer Modeling 

 

2.1 One-dimensional Phase Change Problem (Melting) 

 

A solid bar as shown in Fig. 1 was considered having a 

single phase-change temperature (melting temperature) Tm 

confined to a semi infinite region 0 < x < ∞. Initially, the 

solid is at a uniform temperature Ti which is equal to the 

phase change temperature Tm. At time t > 0, the 

temperature of the boundary surface at x = 0 is raised to 

T0, which is higher than Tm and maintained at that 

temperature for times t > 0. As a result, melting starts at 

the surface x ≥ 0 and the solid- liquid interface moves in 

the positive x-direction as shown in Fig. 1. 

  

 

 

 

 

 

Fig. 1: Semi-infinite bar 

 

Fig. 2 shows the coordinates and the temperature profile. 

The solid phase being at a constant temperature Tm 

throughout. The temperature is unknown only in the liquid 

phase; hence the problem is a 1-D single phase Stefan 

problem. In the following analysis, the temperature 

distribution in the liquid phase and the location of the 

solid-liquid interface are determined as a function of time. 

The governing equation with associated initial and 

boundary condition for the above said problem is given as: 

 

 
 

Fig. 2: Schematic of the 1-D problem in the Enthalpy 

based FG method. 
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The initial condition is: 

T(x, t) = Ti   for t = 0, Ti = Tm                                                                  (2) 

The Boundary conditions are: 

Tl (x, t) = To               at x = 0, t > 0, To > Tm                                     (3)                                                                                         

Tl (s(t), t) = Tm       at s(t) ≤ x < ∞, t > 0                           (4)                                                                 

The interface condition is: 

Tl (x, t) = Tm          at x = s (t), t > 0                                 (5)                                                                          

dt

tds
L

x

T
K l )(





      at x = s (t),  t > 0                            (6)                                                                   

The exact solution (R) to the Equation (1) and the 

temperature distribution is:  

)(

])(2/[),( 2/1





erf

txerf

TT

TtxT l

om

ol 



                                          (7)                                                                                                                                         

Where λ is a parameter which can be determined from the 

given relation:  
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The position of the solid –liquid interface at any instant‘t’ 

can be found using the following relation:                                                                                                                                                

S (t) = 2λ (αl t)
1/2

                                                              (9) 

                                                                                                    

2.2 Two-dimensional Phase Change Problem (Melting of 

Pure Gallium in a rectangular Cavity) 

 

 
Fig. 3: Solid gallium in a rectangular cavity 
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To verify the applicability of the enthalpy porosity 

approach to metallurgical systems, the modelling of an 

isothermal phase change was under taken for which 

reliable experimental data exists in the literature. The 

study examined the two dimensional melting of pure 

gallium in a rectangular cavity with one heated wall and 

two sides are insulated, as shown in Fig. 3.  

      Melting and solidification in a 2-D rectangular gallium 

cavity is taken into account to study the influence of 

melting temperature on the phase front evolution. The 

proposed model accounted for the natural convection 

effect in the melt zone. The assumptions considered are:  

 The thermal properties of the material are assumed to 

be constant. 

 Boussinesq approximation is used for treating the 

buoyancy term in the momentum equation. 

Two types of boundary conditions are analysed in this 

problem i.e., Constant temperature and constant heat flux. 

The governing equations are: 

Continuity equation: 
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X- Momentum equation: 
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Energy equation: 
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For solid zone: 
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Initial conditions: 

T = Tm             at t > 0, 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly.               (15)           

Boundary conditions (for t > 0) 

T = Tb,             x = 0, 0 ≤ y ≤ Ly.                                    (16)                                                                                  
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The conventional approach for solving the phase change 

problem is moving grid (MG) method.  The derivation of 

interface condition from the modified governing equation 

is given below.                                            
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2.3 Updatation of ∆H 

 

Isothermal phase change: 
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 Non-isothermal phase change: 
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above equation reduces to the conventional isothermal 

phase change process. 

 

3. Numerical Solution 

 

Phase change processes are basically referred to as a 

transient diffusion problem which is mathematically 

classified as Stefan problem where the moving boundary 

is priory an unknown. 

3.1The Tri-diagonal Matrix Algorithm (TDMA) Method 

 

The Tri Diagonal Matrix Algorithm (TDMA) also known 

as Thomas algorithm was used to solve the system of 

linear algebraic equations. The solution procedure using 

TDMA to solve one-dimensional and two-dimensional 

problems are briefly described below. 

 

One-Dimensional Case 

 

For one-dimensional problems, the discretized algebraic 

equations have a simple structure. A typical one-

dimensional node point distribution is shown in Fig. 4. 

The linear algebraic equation is applied to each node 

points and a system of algebraic equations will result 

comprises of all nodal points. The coefficient matrix is a 

tri-diagonal matrix, in which the non-zero terms exist only 

on its main diagonal and the diagonals immediately above 

and below it. The algebraic equation for a one-dimensional 

problem can be written as 

 
 

          

2 3 

N 

Boundaries 

1 

  

 
 

Fig. 4: The control volume node points in one-

dimensional problem. (Note:  points where the variable 

values are calculated;  known boundary values). 

 

iiiiiii dcba   11  ; 1...,3,2  Ni                               (23) 

1  and 
N  are the boundary conditions (as shown in Fig. 

4). The forward elimination and backward substitution can 

be used to solve this algebraic equation.  

In the forward elimination 
1i  is substituted by i  
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111   iiii QP                                                              (24) 

Substituting Eq. (24) into Eq. (23) gives 
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The backward substitution equation is 

iiii QP  1                                                                  (26) 

Where, 

1

1

1

,




 







iii

iii

i

iii

i

i
Pca

dQc
Q

Pca

b
P                                           (27) 

 
1

1

1

1

1

1

1 ,0 
a

d
Q

a

b
P                                                 (28) 

In every inner iterative step, the coefficients are constant. 

The outer iteration refers to the solution of the nonlinear 

problem. The coefficients and source terms must be 

updated after every outer iterative step. 

 

Two-Dimensional Case 

 

The two-dimensional grid system shown in Fig. 5 was 

considered. The standard two-dimensional discretized 

transport equation is given as:   

 

Fig. 5: Line-by-line application of the TDMA in two-

dimensional geometry. (Note:  calculated;  temporarily 

known values;  known boundary values). 
 

baaaaa SSNNEEWWPP                             (29) 

Equation (29) is re-arranged in the form 
baaaaa EEWWNNPPSS  

 (30) 

To solve the system, TDMA is applied along chosen, for 

example north-south (N-S) lines as shown in Fig. 5.  

 

Table1: Properties of Gallium 

 

The right hand side of Eq (30) is assumed to be 

temporarily known. The system of equations can be solved 

along the N- S direction of the chosen line for values j = 2, 

3, 4, …, N-1 as shown in Fig. 5. Subsequently the 

calculation is moved to the next N- S line. The sequence in 

which lines are chosen is known as the sweep direction. If 

sweep from west (W) to east (E) the values of W to the 

west of point P are known from the calculations on the 

previous line. Values of E to its east, however, are 

unknown so the solution process must be iterative. At each 

iteration cycle E is taken to have its value at the end of 

the previous iteration or a given initial value at the first 

iteration. The line-by-line calculation procedure is 

repeated several times until a converged solution is 

obtained. 

 

3.2 Convergence Criteria 

 

The solution is deemed converged with the difference in 

the values of a given variable between two successive 

iterations is less than a prescribed tolerance. For the phase 

change problem considered here, the variables which were 

calculated at each iteration are the temperature (T) and the 

latent heat content (ΔΗ). The tolerance value was set to 

10
-11

 for both T and ΔΗ. 

 

4. Results and Discussion 
 

4.1 Isothermal Phase Change 

 

For one dimensional case of phase change problem, 

melting of pure Gallium in a semi-infinite domain is 

chosen. This 1-D problem is the class of a one phase 

Stefan problem. The domain length is taken as L = 0.1 m 

for maximum melting time of 1 minute. This domain 

length is equivalent to semi-infinite domain as it is much 

higher than the diffusion length ( t2 ) which is found to 

be 0.058 m. The thermal properties of pure Gallium are 

listed in Table 1. Three control volume sizes, namely 40, 

80 and 160 (in terms of number of control volumes) are 

chosen to carry out this test. This is evident from Fig. 6. 

that beyond the control volume size of 1.25  10
-3

 m 

(which corresponds to number of control volume as 80), 

there is no significant change in the melt front variation 

with respect to time. 

      

 
Fig. 6: Grid independent test for one-phase Stefan problem 

in a semi-infinite domain. 
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Fig. 7: Comparison of melt front position with the exact 

solution. 

 

 
Fig. 8: Comparison of temperature distribution in the melt 

region with the exact solution. 

 

So, this above control volume size is chosen for further 

presentation of results in this problem. To validate the 

proposed method, results were compared with the exact 

solution for our 1-D problem case. 

 A comparison for the temporal variation of melt front 

position is shown in Fig. 7. An excellent agreement was 

found between the proposed method and the exact 

solution. The temperature distribution in the melt region at 

t = 60 sec is also found to be in very good agreement with 

the exact solution which is shown in Fig. 8. 

 For each of the 3 set of the grid size a time 

independent test was being conducted and it was found 

that beyond a time step size of Δt = 0.01, there is no 

significant change in the front evolution. So Δt = 0.01 was 

used for presentation of results. 

In case of two-dimensional isothermal phase change 

problem, the melt front is virtually planer after 1 min as 

the natural convection field is just about to start as shown 

in Fig. 9. 

 From Fig. 10, it is evident that after 3 min the shape of 

the melt front is governed primarily by convection effects, 

with conduction exerting very little influence. Although 

the upper section of the melt front advances rapidly due to 

the impingement of warm fluid, the lower section moves 

considerably slower, there by resulting in the irregular 

morphology. 

 
Fig. 9: Velocity vector plot and melting front position at 

time (t) = 1 min. for melting of pure gallium under 

isothermal phase change condition. 

 

 
Fig. 10: Velocity vector plot and melting front position at 

time (t) = 3 mins for melting of pure gallium under 

isothermal phase change condition. 

 

 
Fig. 11: Isotherm plot and melting front position at time (t) 

= 3 mins for melting of pure gallium under isothermal 

phase change condition. 
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The region of maximum heat flux may be identified by 

examining the isotherm plot given in Fig. 11. The steepest 

temperature gradients are presents in two areas, viz., at the 

upper section of the melt face where warm fluid impinges 

on the solid, and at the lower section of the heated wall 

where cool fluid returning from the melt front impinges on 

the heated wall. 

 The insulating nature of the melt front in the cavity 

was also evident from the isotherm plots. Almost the 

entire temperature drop across the cavity occurred in the 

molten region, left the temperatures of the residual solid 

essentially uniform near the initial temperature. The 

reason for this might be that, all the energy entering the 

cavity at the heated wall was absorbed by the phase 

change at the melt front, allowing only a small fraction to 

penetrate the slightly super-cooled solid. As the major 

temperature gradients occurred in the liquid phase, it was 

the thermal conductivity of the liquid rather than the solid 

that controls the heat transfer, and hence the problems 

associated with the theoretical treatment of anisotropic 

solid conductivity did not arise. 

 The melt front evolution at different time levels were 

compared with the experimental results reported by Gao, 

C., and Viskanta, R., (1984, 1986) and a good agreement 

has been found as shown in Fig. 12.  

 

 
 

Fig. 12: Comparison and validation with experiment for 

melting of pure gallium [Ref]. 

 

Conclusions 
 

The applicability of the enthalpy-porosity technique or  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

total enthalpy method for modelling an isothermal phase 

change in a metallurgical system has been verified by 

examining the two dimensional and one dimensional 

melting of pure gallium under the influence of natural 

convection in a rectangular cavity. Results obtained from 

the numerical study were compared to experimental data 

available in the literature. The method converges rapidly 

and is capable of accurately predicting both the position 

and morphology of the melt front at various times with 

relatively modest computational requirements. The results 

of this work may be taken to be a sound validation of the 

enthalpy- porosity technique for simulating isothermal 

phase changes in metallurgical systems. Also in this work 

a generalized methodology for the modelling of mushy-

region phase change is developed.  

.  
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